Roles of Probiotics in Farm Animals: A Review

Main Article Content

Ahmadreza Mirzaei
Seyed Amin Razavi
Daryoush Babazadeh
Richard Laven
Muhammad Saeed

Abstract

There are many reports of the positive effects of probiotics on gastrointestinal tract (GIT) microorganisms and the immunological systems of their hosts. Probiotics have prophylactic and metaphylactic properties. The two main mechanisms of action of probiotics seem to be the release of compounds with beneficial effects and direct interaction with the cells of the host. The aim of this review was to evaluate the benefits of probiotic use in farm animals and to identify how they influence farm animal performance. The published data suggest that dietary supplementation of probiotics can improve the growth performance, nutrient digestibility, and immune response of farm animals, including cows, sheep, goats, pigs, aquacultures, and poultry. In ruminants, studies have shown that probiotics can significantly enhance the immune response, milk yield, food digestibility, and weight gain, particularly in ruminants exposed to stressful conditions. This is also the case in aquaculture as probiotics have been shown to enhance growth and reproduction traits, provide protection against pathogens, have positive effects on immunity, optimize digestion, and increase water quality. In horses, there is still controversy about the advantages of probiotic supplementation. In addition, some studies showed valuable effects of using probiotics on treatments of GIT diseases, and some studies showed adverse effects of supplementation of probiotics in horses. In poultry, balancing the intestinal microflora is not achievable but controlling the population of microflora is possible and studies showed that supplementation of probiotics could influence some aspects such as improving performance and health parameters. So, probiotics are used by almost all farmers who are trying to reduce antibiotic resistance. In conclusion, dietary supplementation of probiotics to farm animals has many notable influences on their performance, immune system, and diet digestion.

Article Details

How to Cite
Mirzaei, A., Razavi , S. A., Babazadeh, D., Laven, R., & Saeed, M. (2022). Roles of Probiotics in Farm Animals: A Review. Farm Animal Health and Nutrition, 1(1), 17–25. https://doi.org/10.58803/fahn.v1i1.8
Section
Review Article

References

Celiberto LS, Bedani R, Rossi EA, and Cavallini DC. Probiotics: The scientific evidence in the context of inflammatory bowel disease. Crit Rev Food Sci Nutr. 2017; 57(9): 1759-1768. DOI: https://doi.org/10.1080/10408398.2014.941457

Chen J, Wang Q, Liu CM, and Gong J. Issues deserve attention in encapsulating probiotics: Critical review of existing literature. Crit Rev Food Sci Nutr. 2017; 57(6): 1228-1238. Doi: https://doi.org/10.1080/10408398.2014.977991

de Llano DG, Gil-sánchez I, Esteban-fernández A, Ramos AM, Fernández-díaz M, Cueva C, et al. Reciprocal beneficial effects between wine polyphenols and probiotics: An exploratory study. Eur Food Res Technol. 2016; 243: 531-538. Available at: https://www.infona.pl/resource/bwmeta1.element.springer-doi- 10_1007-S00217-016-2770-5

Abushelaibi A, Al-mahadin S, El-tarabily K, Shah NP, and Ayyash M. Characterization of potential probiotic lactic acid bacteria isolated from camel milk. LWT Food Sci Technol. 2017; 79: 316-325. DOI: https://doi.org/10.1016/j.lwt.2017.01.041

Srinivas B, Rani GS, Kumar BK, Chandrasekhar B, Krishna KV, Devi TA, et al. Evaluating the probiotic and therapeutic potentials of Saccharomyces cerevisiae strain (OBS2) isolated from fermented nectar of toddy palm. AMB Express. 2017; 7: 2. DOI: https://doi.org/10.1186%2Fs13568-016-0301-1

Alayande KA, Aiyegoro OA, Ateba CN. Probiotics in animal husbandry: Applicability and associated risk factors. Sustainability. 2020; 12: 1087. DoI: https://doi.org/10.3390/su12031087

Mountzouris KC, Balaskas C, Xanthakos I, Tzivinikou A, and Fegeros K (2009). Efects of a multi-species probiotic on biomarkers of competitive exclusion efcacy in broilers challenged with Salmonella enteritidis. Bri Poult Sci. 50(4): 467-478. DOI: https://doi.org/10.1080/00071660903110935

Corcionivoschi N, Drinceanu D, Pop IM, Stack D, Ştef L, Julean C, et al. (2010). The Efect of probiotics on animal health, review. scientifc papers: Animal Science and Biotechnologies. 43(1): 35-41.

Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M, and Gil A. Mechanisms of action of probiotics. Adv Nutr. 2019; 10(1): S49–S66. DOI: https://doi.org/10.1093/advances/nmy063

Chaucheyras-Durand F and Durand H. Probiotics in animal nutrition and health. Benef Microbes. 2010; 1(1): 3-9. DOI: https://doi.org/10.3920/bm2008.1002

McFarland LV. Meta-analysis of probiotics for the prevention of antibiotic associated diarrhea and the treatment of Clostridium difficile disease. Am J Gastroenterol. 2006; 101(4): 812-822. DOI: https://doi.org/10.1111/j.1572-0241.2006.00465.x

Hossain M, Ko S, Kim G, Firman J, and Yang C. Evaluation of probiotic strains for development of fermented Alisma canaliculatum and their effects on broiler chickens. Poult Sci. 2012; 91(12): 3121-3131. DOI: https://doi.org/10.3382/ps.2012-02333

Razavi SA, Pourjafar M, Hajimohammadi A, Valizadeh R, Naserian AA, Laven R, et al. Effects of dietary supplementation of bentonite and Saccharomyces cerevisiae cell wall on acute-phase protein and liver function in high-producing dairy cows during transition period. Trop Anim Health Prod. 2019a; 51: 1225-1237. DOI: https://doi.org/10.1007/s11250-019-01815-3

Razavi SA, Pourjafar M, Hajimohammadi A. Valizadeh R, Naserian AA, Laven R, et al. Effects of dietary supplementation of bentonite and yeast cell wall on serum blood urea nitrogen, triglyceride, alkaline phosphatase, and calcium in high-producing dairy cattle during the transition period. Comp Clin Pathol. 2019b; 28: 419-425. DOI: https://doi.org/10.1007/s00580-018-2849-4

https://doi.org/10.1007/s00580-019-03074-y

Al-Shawi SG, Dang DS, Yousif AY, Al-Younis ZK, Najm TA, and Matarneh SK. The potential use of probiotics to improve animal health, efficiency, and meat quality: A review. Agriculture. 2020; 10(10): 452. DOI: https://doi.org/10.3390/agriculture10100452

Markowiak P and Śliżewska K. The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathog. 2018; 10: 21. DOI: https://doi.org/10.1186/s13099-018-0250-0

Anee IJ, Alam S, Begum RA, Md Shahjahan R, and Khandaker AM. The role of probiotics on animal health and nutrition. J Basic Appl Zool. 2021; 82: 52. DOI: https://doi.org/10.1186/s41936-021-00250-x

Deng Y, Xu L, Liu S, Wang Q, Guo Z, Chen C, et al. What drives changes in the virulence and antibiotic resistance of vibrio harveyi in the South China Sea? J Fish Dis. 2020a; 43(8): 853-862. DOI: https://doi.org/10.1111/ jfd.13197

Li XY, Duan YL, Yang X, and Yang XJ. Efects of Bacillus subtilis and antibiotic growth promoters on the growth performance, intestinal function and gut microbiota of pullets from 0 to 6 weeks. Animal. 2020; 14(8): 1619-1628. DOI: https://doi.org/10.1017/S1751731120000191

Deng Z, Luo XM, Liu J, and Wang H. Quorum sensing, bioflm, and intestinal mucosal barrier: Involvement the role of probiotic. Front Cell Infect Microbiol. 2020b; 10: 538077. DOI: https://doi.org/10.3389/fcimb.2020.538077

Han T, Zhang Q, Liu N, Wang J, Li Y, Huang X, et al. Changes in antibiotic resistance of Escherichia coli during the broiler feeding cycle. Poult Sci. 2020; 99(12): 6983-6989. DOI: https://doi.org/10.1016/j.psj.2020.06.068

Chaucheyras-Durand F, Walker ND, and Bach A. Efects of active dry yeasts on the rumen microbial ecosystem: Past, present and future. Anim Feed Sci Technol. 2008; 145(1-4): 5-26. DOI: https://doi.org/10.1016/j.anifeedsci.2007.04.019

Parvez S, Malik KA, Ah Kang S, and Kim HY. Probiotics and their fermented food products are beneficial for health. J Appl Microbiol. 2006; 100(6): 1171-1185. DOI: https://doi.org/10.1111/j.1365- 2672.2006.02963.x

Boirivant M and Strober W. The mechanism of action of probiotics. Curr Opin Gastroenterol. 2007; 23: 679-692. DOI: https://doi.org/10.1097/mog.0b013e3282f0cffc

Musa HH, Wu S, Zhu C, Seri H, and Zhu G. The potential benefits of probiotics in animal production and health. J Anim Vet Adv. 2009; 8(2): 313-321. Available at: https://www.medwelljournals.com/abstract/? doi=javaa.2009.313.321

Servin AL. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol Rev. 2004; 28(4): 405- 440. DOI: https://doi.org/10.1016/j.femsre.2004.01.003

Buts JP. Exemple d’un médicament probiotique. In: Rambaud JC, Buts JP, Corthier G, Flourié B, editors. Saccharomyces boulardii lyophilisé. Flore microbienne intestinale. Montrouge, France: John Libbey Eurotext; 2004. p. 221-244.

La Ragione RM and Woodward MJ. Competitive exclusion by Bacillus subtilis spores of Salmonella enterica serotype enteritidis and Clostridium perfringens in young chickens. Vet Microbiol. 2003; 94(3): 245-256. DOI: https://doi.org/10.1016/s0378-1135(03)00077-4

La Ragione RM, Narbad A, Gasson MJ, and Woodward MJ. In vivo characterization of Lactobacillus johnsonii FI9785 for use as a defined competitive exclusion agent against bacterial pathogens in poultry. Lett Appl Microbiol. 2004; 38(3): 197-205. DOI: https://doi.org/10.1111/j.1472-765x.2004.01474.x

Delcenserie V, Martel D, Lamoureux M, Amiot J, Boutin Y, and Roy

D. Immunomodulatory effects of probiotics in the intestinal tract. Curr Issues Mol Biol. 2008; 10(1-2): 37-54.

https://pubmed.ncbi.nlm.nih.gov/18525105/

Johnson-Henry KC, Donato KA, Dhen-Tu G, Gordanpour M, and Sherman PM. Lactobacillus rhamnosus strain GG prevents enterohemorragic Escherichia coli O157:H7-induced changes in epithelial barrier function. Infect Immun. 2008; 76(4): 1340-1348. DOI: https://doi.org/10.1128/iai.00778-07

Elghandour MMY, Tan ZL, Abu Hafsa SH, Adegbeye MJ, Greiner R, Ugbogu EA, et al. Saccharomyces cerevisiae as a probiotic feed additive to non- and pseudo-ruminant feeding: A review. J Appl Microbiol. 2020; 128(3): 658-674. DOI: https://doi.org/10.1111/jam.14416

Chiquette J, Allison MJ, and Rasmussen MA. Prevotella bryantii 25A used as a probiotic in early-lactation dairy cows: Efect on ruminal fermentation characteristics, milk production, and milk composition. J Dairy Sci. 2008; 9(9): 3536-3543. Available at: https://www.journalofdairyscience.org/article/S0022-0302(08)71068- 3/fulltext

Weimer PJ. Redundancy, resilience, and host specifcity of the ruminal microbiota: Implications for engineering improved ruminal fermentations. Front Microbiol. 2015; 6: 296. DOI: https://doi.org/10.3389/fmicb.2015. 00296

Uyeno Y, Shigemori S, and Shimosato T. Efect of probiotics/prebiotics on cattle health and productivity. Microbes Environ. 2015; 30(2): 126-132. DOI: https:// doi.org/10.1264/jsme2.ME14176

Jouany JP, Mathieu F, Senaud J, Bohatier J, Bertin G, and Mercier M. Efect of Saccharomyces cerevisiae and Aspergillus oryzae on the digestion of nitrogen in the rumen of defaunated and refaunated sheep. Anim Feed Sci Technol. 1998; 75(1): 1-13. DOI: https://doi.org/10.1016/S0377-8401(98)00194-1

Ma ZZ, Cheng YY, Wang SQ, Ge JZ, Shi HP, and Kou JC. Positive efects of dietary supplementation of three probiotics on milk yield, milk composition and intestinal fora in Sannan dairy goats varied in kind of probiotics. J Anim Physiol Anim Nutr (Berl). 2020; 104(1): 44-55. DOI: https://doi.org/10.1111/jpn.13226

Jing W, Liu Q, and Wang W. Bifdobacterium bifdum TMC3115 ameliorates milk protein allergy in by afecting gut microbiota: A randomized double-blind control trial. J Food Biochem. 2020; 44(11): e13489. DOI: https://doi.org/ 10.1111/jfbc.13489

Nocek JE and Kautz WP. Direct-fed microbial supplementation on ruminal digestion, health, and performance of pre- and postpartum dairy cattle. J Dairy Sci. 2006; 89(1): 260-261. DOI: https://doi.org/10.3168/jds.S0022- 0302(06)72090-2

Desnoyers M, Giger-Reverdin S, Bertin G, Duvaux-Ponter C, and Sauvant D. Meta-analysis of the infuence of Saccharomyces cerevisiae supplementation on ruminal parameters and milk production of ruminants. J Dairy Sci. 2009; 29(4): 1620-1632. DOI: https://doi.org/10.3168/jds.2008-1414

Apás AL, Dupraz J, Ross R, González SN, and Arena ME. Probiotic administration efect on fecal mutagenicity and microfora in the goat’s gut. J Biosci Bioeng. 2010; 110(5): 537-540. DOI: https://doi.org/10.1016/j.jbiosc.2010.06.005

Du R, Jiao S, Dai Y, An J, Lv J, Yan X, et al. Probiotic Bacillus amyloliquefaciens C-1 improves growth performance, stimulates GH/IGF-1, and regulates the gut microbiota of growth-retarded beef calves. Front Microbiol. 2018; 9: 2006. DOI: https://doi.org/10.3389/fmicb.2018. 02006

Boyd J, West JW, and Bernard JK. Efects of the addition of direct-fed microbials and glycerol to the diet of lactating dairy cows on milk yield and apparent efciency of yield. J Dairy Sci. 2011; 94(9): 4616- 4622. DOI: https://doi. org/10.3168/jds.2010-3984

Signorini ML, Soto LP, Zbrun MV, Sequeira GJ, Rosmini MR, and Frizzo LS. Impact of probiotic administration on the health and fecal microbiota of young calves: A meta-analysis of randomized controlled trials of lactic acid bacteria. Res Vet Sci. 2012; 93(1): 250-258. DOI: https://doi. org/10.1016/j.rvsc.2011.05.001

Cao LT, Wu JQ, Xie F, Hu SH, and Mo Y. Efcacy of nisin in treatment of clinical mastitis in lactating dairy cows. J Dairy Sci. 2007; 90(8): 3980-

DOI: https://doi.org/10.3168/jds.2007-0153

Alawneh JI, James AS, Phillips N, Fraser B, Jury K, Soust M, et al. Efcacy of a Lactobacillus-based teat spray on udder health in lactating dairy cows Front Vet Sci. 2020; 7: 584436. DOI: https://doi. org/10.3389/fvets.2020.584436

Krehbiel C, Rust S, Zhang G, and Gilliland S. Bacterial direct-fed microbials in ruminant diets: Performance response and mode of action. J Anim Sci. 2003; 81(14): E120-E132. DOI: https://doi.org/10.2527/2003.8114_suppl_2E120x

Chen B, Peng M, Tong W, Zhang Q, and Song Z. The Quorum Quenching Bacterium Bacillus licheniformis T-1 protects Zebrafsh against Aeromonas hydrophila infection. Probiotics Antimicrob Proteins. 2020a; 12(1): 160-171. DOI: https://doi.org/10.1007/s12602-018-9495-7

Chen YY, Wang YL, Wang WK, Zhang ZW, Si XM, Cao ZJ, et al. Benefcial efect of Rhodopseudomonas palustris on in vitro rumen digestion and fermentation. Benef Microbes. 2020b; 11(1): 91-99. DOI: https://doi. org/10.3920/BM2019.0044

Al Jassim RA, Andrews FM. The bacterial communityof the horse gastrointestinal tract and its relation tofermentative acidosis, laminitis, colic, and stomach ulcers. TheVeterinary clinics of North America. Equine Pract 2009 ;25:199-215

Costa MC and Weese JS. The equine intestinal microbiome. Anim Health Res Rev. 2012; 13(1): 121-128. DOI: https://doi.org/10.1017/s1466252312000035

Moreau MM, Eades SC, Reinemeyer CR, Fugaro MN, and Onishi JC. Illumina sequencing of the V4 hypervariable region 16S rRNA gene revealsextensive changes in bacterial communities in the cecum followingcarbohydrate oral infusion and development of early-stage acutelaminitis in the horse. Vet Microbiol. 2014; 168(2-4): 436-441. DOI: https://doi.org/10.1016/j.vetmic.2013.11.017

Shepherd ML, Swecker WS Jr, Jensen RV, and Ponder MA. Characterization of the fecal bacteria communities of forage- fedhorses by pyrosequencing of 16S rRNA V4 gene amplicons. FEMS Microbiol Lett. 2012; 326(1): 62-68. DOI: https://doi.org/10.1111/j.1574-6968.2011.02434.x

Dougal K, de la Fuente G, Harris PA, Girdwood SE, Pinloche E, and Newbold JC. Identification of a core bacterial community within the large intestine of thehorse. PLoS ONE. 2013; 8(10): e77660. DOI: https://doi.org/10.1371/journal.pone.0077660

World Health Organization/ Food and Agriculture Organization of the United Nations (FAO/WHO). Guidelines for the evaluation of probiotics in food. 2002. Available at: https://4cau4jsaler1zglkq3wnmje1-wpengine.netdna-ssl.com/wp- content/uploads/2019/04/probiotic_guidelines.pdf

Oelschlaeger TA. Mechanisms of probiotic actions–Areview. Int J Med Microbiol. 2010; 300(1): 57-62. DOI: https://doi.org/10.1016/j.ijmm. 2009.08.005

Desrochers AM, Dolente BA, Roy MF, Boston R, and Carlisle S. Efficacy ofSaccharomyces boulardiifor treatment of horses with acuteenterocolitis. J Am Vet Med Assoc. 2005; 227(6): 954-959. DOI: https://doi.org/10.2460/javma.2005.227.954

Boyle AG, Magdesian KG, Durando MM, Gallop R, and Sigdel S. Saccharomyces boulardii viability and efficacy in horses with antimicrobial-induced diarrhoea. Vet Rec. 2013; 172(5): 128. DOI: https://doi.org/10.1136/vr.100833

Weese JS, Anderson ME, Lowe A, Penno R, da Costa TM, Button L, et al. Screening of the equine intestinal microflora for potential probiotic organisms. Equine Vet J. 2004; 36: 351-355. DOI: https://doi.org/10.2746/0425164044890616

Schoster A, Staempfli HR, Abrahams M, Jalali M, Weese JS, and Guardabassi L. Effect of a probiotic on prevention of diarrhea and Clostridium difficile and Clostridium perfringens shedding in foals. J Vet Intern Med. 2015; 29(3): 925-931. DOI: https://doi.org/10.1111/jvim.12584

Strobel C, Gunther E, Romanowski K, Busing K, Urubschuro V, and Zeyner A. Effects of oral supplementation of probiotic strains of Lactobacillus rhamnosus and Enterococcus faecium on diarrhoea events in foals in their first weeks of life. J Anim Physiol Anim Nutr. 2018; 102(5): 1357-1365. DOI: https://doi.org/10.1111/jpn.12923

Yuyama T, Shigeki Yusa, Takai S, Tsubaki S, Kado Y, and Morotomi M. Evaluation of a host-specific Lactobacillus probiotic in neonatal foals. J Appl Res Vet Med. 2004; 2: 26-32. Available at: https://bluegrassanimalproducts.com/wp-content/uploads/2018/

/ foal-study.pdf

Parraga ME, Spier SJ, Thurmond M, and Hirsh D. A clinical trial of probiotic administration for prevention of Salmonella shedding in the postoperative period in horses with colic. J Vet Intern Med. 1997; 11: 36-41. DOI: https://doi.org/10.1111/j.1939-1676.1997.tb00071.x

Kim LM, Morley PS, Traub-Dargatz JL, Salman MD, and Gentry-Weeks

C. Factors associated with Salmonella shedding among equine colic patients at a veterinary teaching hospital. J Am Vet Med Assoc. 2001; 218(5): 740-748. DOI: https://doi.org/10.2460/javma.2001.218.740

Patro JN, Ramachandran P, Barnaba T, Mammel MK, Lewis JL, and Elkins CA. Culture independent metagenomic surveillance of commercially available probiotics with highthroughput next generation sequencing. mSphere. 2016; 1(2): e00057-16. DOI: https://doi.org/10.1128/mSphere.00057-16

Berreta A, Baumgardner RM, Kopper JJ. Evaluation of commercial veterinary probiotics containing enterococci for transferrable vancomycin resistance genes. BMC Res Notes 2020;13:275

Minalyan A, Gabrielyan L, Scott D, Jacobs J, and Pisegna JR. The gastric and intestinal microbiome: Role of proton pump inhibitors. Curr Gastroenterol Rep. 2017; 19(8): 42. DOI: https://doi.org/10.1007/s11894-017-0577-6

Modesto M, D’Aimmo MR, Stefanini I, et al. A novel strategy to select Bifidobacterium strains and prebiotics as natural growth promoters in newly weaned pigs. Livest Sci. 2009;122:248–58.

Böhmer BM, Kramer W, Roth-Maier DA. Dietary probiotic supplementation and resulting effects on performance, health status and microbial characteristics of primiparous sows. J Anim Physiol Anim Nutr. 2006;90:309–15.

Hong, H.A., Hong Duc, L. and Cutting, S., 2005. The use of bacterial spore formers as probiotics. FEMS Microbiology Reviews 29: 813‑835.

Hassoun-Kheir N, Stabholz Y, Kreft JU, de la Cruz R, Romalde JL, Nesme J, et al. Comparison of antibiotic-resistant bacteria and antibiotic resistance genes abundance in hospital and community wastewater: A systematic review. Sci Total Environ. 2020; 743: 140804. DOI: https://doi.org/10.1016/j.scitotenv.2020.140804

Da Costa PM, Loureiro L, and Matos AJF. Transfer of multidrug- resistant bacteria between intermingled ecological niches: The interface between humans, animals and the environment. Int J Environ Res Public Health. 2013; 10(1): 297-294. DOI: https://doi.org/10.3390/ijerph10010278

Banerjee G and Ray AK. The advancement of probiotics research and its application in fsh farming industries. Res Vet Sci, 2017; 115: 66-77. DOI: https://doi.org/10.1016/j.rvsc.2017.01.016

Olmos J, Acosta M, Mendoza G, and Pitones V. Bacillus subtilis, an ideal probiotic bacterium to shrimp and fsh aquaculture that increase feed digestibility, prevent microbial diseases, and avoid water pollution. Arch Microbiol. 2020; 202(3): 427-435. DOI: https://doi.org/10.1007/ s00203-019-01757-2

Balcázar JL, Rojas-Luna T, and Cunningham DP. Efect of the addition of four potential probiotic strains on the survival of pacifc white shrimp (Litopenaeus vannamei) following immersion challenge with Vibrio parahaemolyticus. J Invertebr Pathol. 2007; 96(2): 147-150. DOI: https://doi.org/10. 1016/j.jip.2007.04.008

Giri SS, Sukumaran V, and Oviya M. Potential probiotic Lactobacillus plantarum VSG3 improves the growth, immunity, and disease resistance of tropical freshwater fsh, Labeo rohita. Fish Shellfish Immunol. 2013; 34(2): 660-662. DOI: https://doi.org/10.1016/j.fsi.2012.12.008

Marques A, Thanh TH, Sorgeloos P, and Bossier P. Use of microalgae and bacteria to enhance protection of gnotobiotic Artemia against diferent pathogens. Aquaculture. 2006; 258(1-4): 116-126. DOI: https://doi.org/10.1016/j.aquaculture. 2006.04.021

Supamattaya K, Kiriratnikom S, Boonyaratpalin M, and Borowitzka L. Efect of a Dunaliella extract on growth performance, health condition, immune response and disease resistance in black tiger shrimp (Penaeus monodon). Aquac. 2005; 248(1-4): 207-216. DOI: https://doi.org/10.1016/j.aquaculture.2005.04. 014

Mo WY, Choi WM, Man KY, and Wong MH. Food waste-based pellets for feeding grass carp (Ctenopharyngodon idellus): Adding baker’s yeast and enzymes to enhance growth and immunity. Sci Total Environ. 2020; 707: 134954. DOI: https://doi.org/10.1016/j.scitotenv.2019.134954

Wu R, Shen J, Tian D, Yu J, He T, Yi J, et al. A potential alternative to traditional antibiotics in aquaculture: Yeast glycoprotein exhibits

antimicrobial efect in vivo and in vitro on Aeromonas caviae isolated from Carassius auratus gibelio. Vet Med Sci. 2020; 6(3): 639-648. DOI: https:// doi.org/ 10.1002/vms3.253

Moriarty DJW. Control of luminous Vibrio species in penaeid aquaculture ponds. Aquac. 1998; 164(1-4): 351-358. DOI: https://doi.org/10.1016/S0044-8486(98) 00199-9

Hai NV. The use of probiotics in aquaculture. J Appl Microbiol. 2015; 119(4): 917-935. DOI: https://doi.org/10.1111/jam.12886

Hai NV, Buller N, and Fotedar R. Efects of probiotics (pseudomonas synxantha and pseudomonas aeruginosa) on the growth, survival and immune parameters of juvenile western king prawns (penaeus latisulcatus kishinouye, 1896). Aquac Res. 2009a; 40(5): 590-602. DOI: https://doi.org/10.1111/j. 1365-2109.2008.02135.x

Aly SM, Mohamed MF, and John G. Efect of probiotics on the survival, growth and challenge infection in Tilapia nilotica (Oreochromis niloticus). Aquac Res 2008; 39(6): 647-656. DOI: https://doi.org/10.1111/j.1365-2109. 2008.01932.x

Van Doan H, Hoseinifar SH, Tapingkae W, Seel-audom M, Jaturasitha S, Dawood MAO, et al. Boosted growth performance, mucosal and serum immunity, and disease resistance Nile Tilapia (Oreochromis niloticus) Fingerlings Using Corncob-Derived Xylooligosaccharide and Lactobacillus plantarum CR1T5. Probiotics Antimicrob Proteins. 2020; 12(2): 400-411. DOI: https://doi.org/10.1007/s12602-019- 09554-5

Waiyamitra P, Zoral MA, Saengtienchai A, Luengnaruemitchai A, Decamp O, Gorgoglione B, et al. Probiotics modulate tilapia resistance and immune response against tilapia lake virus infection. Pathogens, 2020; 9(11): 919. DOI: https://doi.org/10.3390/pathogens9110919

Chythanya R, Karunasagar I, and Karunasagar I. Inhibition of shrimp pathogenic vibrios by a marine Pseudomonas I-2 strain. Aquac. 2002; 208(1-2): 1-10. DOI: https://doi.org/10.1016/S0044-8486(01)00714-1

Castex M, Chim L, Pham D, Lemaire P, Wabete N, Nicolas JL, et al. Probiotic P. acidilactici application in shrimp Litopenaeus stylirostris culture subject to vibriosis in New Caledonia. Aquac. 2008; 275(1-4): 182-193. DOI: https://doi.org/10.1016/j.aquaculture.2008.01.011

Wang R, Guo Z, Tang Y, Kuang J, Duan Y, Lin H, et al. Efects on development and microbial community of shrimp Litopenaeus vannamei larvae with probiotics treatment. AMB Express. 2020; 10: 10. DOI: https://doi.org/10.1186/s13568-020-01041-3

Leyva-Madrigal KY, Luna-González A, Escobedo-Bonilla CM, Fierro- Coronado JA, and Maldonado-Mendoza IE. Screening for potential probiotic bacteria to reduce prevalence of WSSV and IHHNV in whiteleg shrimp (Litopenaeus vannamei) under experimental conditions. Aquac. 2011; 322-323: 16-22. DOI: https://doi.org/10.1016/j.aquaculture.2011.09.03

Gunasundari V, Ajith Kumar TT, Ghosh S, and Kumaresan S. An ex vivo loom to evaluate the brewer’s yeast Saccharomyces cerevisiae in clownfsh aquaculture with special reference to Amphiprion percula (Lacepede, 1802). Turkish J Fish Aquat Sci. 2013; 13: 389-395. Available at: https://www.trjfas.org/uploads/pdf_192.pdf

Li P and Gatlin DM. Evaluation of the prebiotic GroBiotic®-A and brewers yeast as dietary supplements for sub-adult hybrid striped bass (Morone chrysops x M. saxatilis) challenged in situ with Mycobacterium marinum. Aquac. 2005; 248(1-4): 197-205. DOI: https://doi.org/10.1016/j.aquaculture.2005.03.005

Li P and Gatlin DM. Dietary brewers yeast and the prebiotic GrobioticTM AE infuence growth performance, immune responses and resistance of hybrid striped bass (Morone chrysops x M. saxatilis) to Streptococcus iniae infection. Aquaculture. 2004; 231(1-4): 445-

DOI: https://doi.org/10.1016/j.aquaculture.2003.08.021

Taoka Y, Maeda H, Jo JY, Jeon MJ, Bai SC, Lee WJ, et al. Growth, stress tolerance and non-specifc immune response of Japanese founder Paralichthys olivaceus to probiotics in a closed recirculating system. Fish Sci. 2006; 72(2): 310-321. DOI: https://doi.org/10.1111/j.1444- 2906.2006.01152.x

Midhun SJ, Neethu S, Arun D, Vysakh A, Divya L, Radhakrishna EK, et al. Dietary supplementation of Bacillus licheniformis HGA8B improves growth parameters, enzymatic profle and gene expression of Oreochromis niloticus. Aquac. 2019; 503: 289-296. DOI: https://doi.org/10.1016/j.aquaculture.2019.02.064

Kuebutornye FKA, Abarike ED, Lu Y, Hlordzi V, Sakyi ME, Afriyie G, et al. Mechanisms and the role of probiotic Bacillus in mitigating fsh pathogens in aquaculture. Fish Physiol Biochem. 2020; 46: 819-841. DOI: https://doi.org/10.1007/s10695-019-00754-y

Arellano-Carbajal F and Olmos-Soto J. Thermostable α-1,4- and α-1,6- glucosidase enzymes from Bacillus sp. isolated from a marine environment. World J Microbiol Biotechnol. 2002; 18: 791-795. Available at: https://link.springer.com/article/10.1023/A:1020433210432

Leonel Ochoa-Solano J and Olmos-Soto J. The functional property of Bacillus for shrimp feeds. Food Microbiol. 2006; 23(6): 519-525. -DOI: https://doi.org/10.1016/j.fm.2005.10.004

Chen B, Peng M, Tong W, Zhang Q, and Song, Z. The Quorum Quenching Bacterium Bacillus licheniformis T-1 protects Zebrafsh against Aeromonas hydrophila infection. Probiotics Antimicrob Proteins. 2020a; 12: 160-171. Available at: https://link.springer.com/article/10.1007/s12602-018-9495-7

Chen YY, Wang YL, Wang WK, Zhang ZW, Si XM, Cao ZJ, et al. Benefcial efect of Rhodopseudomonas palustris on in vitro rumen digestion and fermentation. Benef Microbes. 2020b; 11(1); 91-99. DOI: https://doi.org/10.3920/BM2019.0044

Kewcharoen W and Srisapoome P. Probiotic efects of Bacillus spp. from Pacifc white shrimp (Litopenaeus vannamei) on water quality and shrimp growth, immune responses, and resistance to Vibrio parahaemolyticus (AHPND strains). Fish Shellfish Immunol. 2019; 94: 175-189. DOI: https://doi.org/10.1016/j.fsi.2019.09.013

Dalmin G, Kathiresan K, and Purushothaman A. Efect of probiotics on bacterial population and health status of shrimp in culture pond ecosystem. Indian J Exp Bio. 2001; 39(9): 939-942. Available at: https://pubmed.ncbi.nlm.nih.gov/11831382/

Wang Y and He Z. Efect of probiotics on alkaline phosphatase activity and nutrient level in sediment of shrimp, Penaeus vannamei, ponds. Aquac. 2009; 287(1-2): 94-97. DOI: https://doi.org/10.1016/j.aquaculture.2008.10.022

Wang YB, Xu ZR, and Xia MS. The efectiveness of commercial probiotics in northern white shrimp Penaeus vannamei ponds. Fish Sci. 2005; 71: 1036-1041. DOI: https://doi.org/10.1111/j.1444- 2906.2005.01061.x

Babazadeh D, Vahdatpour T, Nikpiran H, Jafargholipour MA and Vahdatpour S. Effects of probiotic, prebiotic and synbiotic intake on blood enzymes and performance of Japanese quails (Coturnix japonica). Indian J of Anim Sci. 2011;81(8): 870–874.

Nikpiran H, Vahdatpour T, Babazadeh D, Tabatabaei SM, and Vahdatpour S. Effects of Functional Feed Additives on Growth Influenced Hormones and Performance of Japanese Quails (Coturnix japonica). Greener J of Bio Sci. 2014;4 (2): 039-044. Available at: https://www.scinapse.io/papers/2323575296#fullText

Babazadeh D, and Asasi K . Effects of in ovo synbiotic injection on growth performance, intestinal bacterial load and antibody titres in broiler chickens vaccinated against infectious bursal disease. Bulgarian Journal of Veterinary Medicine, 2021, 24, No 4, 520-532. DOI: https://doi.org/10.15547/bjvm.2298

Saeed M, Babazadeh D, Naveed M, Alagawany M, E Abd El-Hack M, Arain MA, Tiwari R, Sachan S, Karthik K, Dhama K, Elnesrk SS and Chaoa S. In ovo delivery of various biological supplements, vaccines and drugs in poultry: current knowledge. J Sci Food Agric 2019; 99: 3727–3739. DOI: https://doi.org/10.1002/jsfa.9593

Nikpiran H, Vahdatpour T, Babazadeh D, and Vahdatpour S. Effects of Saccharomyces cerevisiae, Thepax and their combination on blood enzymes and performance of Japanese quails (Coturnix japonica). Journal of Animal and Plant Sciences, 2013;23: 369-375. Available at: https://www.semanticscholar.org/paper/Effects-of- Saccharomyces-cerevisiae%2C-Thepax-and-on-Nikpiran- Vahdatpour/becaf180aa466a89056b96812d10e6c35a2abbf0

Vahdatpour T, and Babazadeh D. The effects of Kefir rich in probiotic administration on serum enzymes and performance in male Japanese quails. Journal of Animal & Plant Sciences, 2016;26(1): 34-39. Available at: http://thejaps.org.pk/docs/v-26- 01/05.pdf

Saeed M, Babazadeh D, Arain MA, Naveed M, Shah QA, Kamboh AA, Moshaveri A, Modarresi-Ghazani F, Hejazi V, and Chao S. The use of chicoric acid from Echinacea purpurea as a feed additive in poultry nutrition. World’s Poultry Science Journal. 2017;74(1): 69- 78. DOI: https://doi.org/10.1017/S0043933917001027

Lee S; Lee J, Jin YI, Jeong JC, Chang YH, Lee Y, Jeong Y, and Kim

M. Probiotic characteristics of Bacillus strains isolated from Korean traditional soy sauce. LWT Food Sci. Technol. 2017; 79: 518-524. DIO: https://doi.org/10.1016/j.lwt.2016.08.040

Vankerckhoven V, Huys G, Vancanneyt M, Vael C, Klare I, Romond M, Entenza JM, Moreillon P, Wind RD, Knol J, et al. Biosafety assessment of probiotics used for human consumption: Recommendations from the EU-PROSAFE project. Trends Food Sci. Technol. 2008; 19: 102-114. DOI: https://doi.org/10.1016/j.tifs.2007.07.013

Most read articles by the same author(s)