Vitamin D Deficiency in Farm Animals: A Review
Main Article Content
Abstract
One of the most effective vitamins in the musculoskeletal structure and immune system of farm animals is Vitamin D. The widespread risk of Vitamin D deficiency states is known widely resulting in autoimmune diseases, diabetes, rickets, metabolic bone diseases, and cancers. The aim of this review is to address the subject of Vitamin D deficiency in farm animals and the role of vitamin D in health and deficiency states. Although Vitamin D deficiency is generally defined as < 20 ng/mL in serum, but this level remains to be discussed. Vitamin D synthesis in the skin is the major source of Vitamin D in the body and is influenced by genetic and several environmental factors, such as length of sun exposure, season, and latitude. Sun exposure might be limited during winter in some areas, such as northern latitudes. Thus, food sources can play essential roles in supplying the demand for vitamin D. Some animal species have more sensitivity to Vitamin D deficiency due to their different metabolism, homeostasis, and adaptation to specific diets and environments. Farm animal species, such as cattle, pigs, llamas, Alpacas, small ruminants, and broiler chickens are more sensitive to Vitamin D deficiency. However, some farm animal species including horses and donkeys usually have a low risk of Vitamin D deficiency. Therefore, the management of Vitamin D deficiency and its consequences are critical in some species. The inclusion of Vitamin D in the body of farm animals depended on farming practices, sun exposure in different seasons, and the content of diets. Due to the diversity of species, regulation of many ongoing processes in animals’ bodies, the complexity of Vitamin D metabolism, and different metabolites, more studies are necessary to find the vital roles of vitamin D in the prevention and control of diseases in farm animals.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Holick MF. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Rev Endocr Metab Disord. 2017; 18(2):153-165. DOI: https://doi.org/10.1007/s11154-017- 9424-1
Amrein K, Scherkl M, Hoffmann M, Neuwersch-Sommeregger S, Köstenberger M, Tmava Berisha A, et al. Vitamin D deficiency 2.0: An update on the current status worldwide. Eur J Clin Nutr. 2020; 74(11): 1498-1513. DOI: https://doi.org/10.1038/s41430-020- 0558-y
Nelson CD, Lippolis JD, Reinhardt TA, Sacco RE, Powell JL, Drewnoski ME, O’Neil M, Beitz DC, Weiss WP. Vitamin D status of dairy cattle: Outcomes of current practices in the dairy industry, J Dairy Sci. 2016; 99(12): 10150-10160. DOI: https://doi.org/10.3168/jds.2016- 11727
DeLuca HF. Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr. 2004; 80(6 suppl): 1689S-1696S. DOI: https://doi.org/10.1093/ajcn/80.6.1689s
Hodnik JJ, Ježek J, and Starič J. A review of vitamin D and its importance to the health of dairy cattle. J Dairy Sci. 2020; 87(S1): 84- 87. DOI: https://doi.org/10.1017/S0022029920000424
Hurst EA, Homer NZ, and Mellanby RJ. Vitamin D metabolism and profiling in veterinary species. Metabolites. 2020; 10(9): 371. DOI: https://doi.org/10.3390/metabo10090371
Madsen KH, Rasmussen LB, Andersen R, Mølgaard C, Jakobsen J, Bjerrum PJ, and Tetens I. Randomized controlled trial of the effects of vitamin D–fortified milk and bread on serum 25-hydroxyvitamin D concentrations in families in Denmark during winter: The VitmaD study. Am J Clin Nutr. 2013; 98: 374-382. DOI: https://doi.org/10.3945/ajcn.113.059469
Knudsen VK, Fagt S, Trolle E, Matthiessen J, Groth MV, Biltoft-Jensen A, Sørensen MR, and Pedersen AN. Evaluation of dietary intake in Danish adults by means of an index based on food-based dietary
guidelines. Food Nutr Res. 2012;56. DOI: https://doi.org/ 10.3402/fnr.v56i0.17129.
Hymøller L, and Jensen SK. Vitamin D3 synthesis in the entire skin surface of dairy cows despite hair coverage. J Dairy Sci. 2010; 93(5): 2025-2029. DOI: https://doi.org/10.3168/jds.2009-2991
Hymøller L, Jensen SK, Lindqvist H, Johansson B, Nielsen MO, and Nadeau E. Supplementing dairy steers and organically managed dairy cows with synthetic vitamin D3 is unnecessary at pasture during exposure to summer sunlight. J Dairy Res. 2009; 76(3): 372- 378. DOI: https://doi.org/10.1017/s0022029909004130
Jakobsen J and Saxholt E. Vitamin D metabolites in bovine milk and butter. J Food Comp Anal. 2009; 22(5): 472-478. DOI: https://doi.org/10.1016/j.jfca.2009.01.010
Jakobsen J, Jensen SK, Hymøller L, Andersen EW, Kaas P, Burild A, et al. Short communication: Artificial ultraviolet B light exposure increases vitamin D levels in cow plasma and milk. J Dairy Sci. 2015; 98(9): 6492-6498. Available at: https://b2n.ir/q50807
Dusso AS, Brown AJ, and Slatopolsky E. Vitamin D. Am J Physiol Renal Physiol. 2005; 289: F8-F28. DOI: https://doi.org/10.1152/ajprenal.00336.2004
Holick MF, Chen TC, Lu Z, and Sauter E. Vitamin D and skin physiology: A d-lightful story. J Bone Miner Res. 2007; 22: V28-V33. DOI: https://doi.org/10.1359/jbmr.07s211
Dittmer KE and Thompson KG. Vitamin D metabolism and rickets in domestic animals: A review. Vet Pathol. 2011; 48(2): 389-407. DOI: https://doi.org/10.1177/0300985810375240
Prosser DE and Jones G. Enzymes involved in the activation and inactivation of vitamin D. Trends Biochem Sci. 2004; 29: 664-673. DOI: https://doi.org/10.1016/j.tibs.2004.10.005
Azam N, Zhang MYH, Wang XM, Tenenhouse HS, and Portale AA. Disordered regulation of renal 25-hydroxyvitamin D-1a-hydroxylase gene expression by phosphorus in X-linked hypophosphatemic (Hyp) mice. Endocrinology. 2003; 144(8): 3463-3468. DOI: https://doi.org/10.1210/en.2003-0255
Zhong Y, Armbrecht HJ, and Christakos S. Calcitonin, a regulator of the 25-hydroxyvitamin D3 1a-hydroxylase gene. J Biol Chem. 2009; 284(17): 11059-11069. DOI: https://doi.org/10.1074%2Fjbc.M806561200
Zierold C, Mings JA, and DeLuca HF. Regulation of 25hydroxyvitamin D3-24-hydroxylase mRNA by 1,25-dihydroxy vitamin D3 and parathyroid hormone. J Cell Biochem. 2003; 88(2): 234- 237. DOI: https://doi.org/10.1002/jcb.10341
Zierold C, Reinholz GG, Mings JA, Prahl JM, and DeLuca HF. Regulation of the porcine 1,25-dihydroxyvitamin D3-24hydroxylase (CYP24) by 1,25-dihydroxyvitamin D3 and parathyroid hormone in AOK-B50 cells. Arch Biochem Biophys. 2000; 381: 323-327. DOI: https://doi.org/10.1006/abbi.2000.1964
Suda T, Ueno Y, Fujii K, and Shinki T. Vitamin D and bone. J Cell Biochem. 2003; 88(2): 259-266. DOI: https://doi.org/10.1002/jcb.10331
Suzuki Y, Landowski CP, and Hediger MA. Mechanisms and regulation of epithelial Ca2þ absorption in health and disease. Annu Rev Physiol. 2008; 70: 257-271. DOI: https://doi.org/10.1146/annurev.physiol. 69.031905.161003
Holick MF. Vitamin D: Photobiology, metabolism, mechanism of action and clinical applications. In: Favus MJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism, 4th ed. Philadelphia: Lippincott Williams & Wilkins; 1999. p. 92-98.
Goltzman D, Miao DS, Panda DK, and Hendy GN. Effects of calcium and of the Vitamin D system on skeletal and calcium homeostasis: Lessons from genetic models. J Steroid Biochem Mol Biol. 2004; 89(90): 485-489. DOI: https://doi.org/10.1016/j.jsbmb.2004.03.058
Canaff L and Hendy GN. Human calcium-sensing receptor gene: vitamin D response elements in promoters P1 and P2 confer transcriptional responsiveness to 1,25-dihydroxyvitamin D. J Biol Chem. 2002; 277(33): 30337-30350. DOI: https://doi.org/10.1074/jbc.m201804200
Hoenderop JGJ, Nilius B, and Bindels RJM. Calcium absorption across epithelia. Physiol Rev. 2005; 85: 373-422. DOI: https://doi.org/10.1152/physrev.00003.2004
Krishnan AV, Peehl DM, and Feldman D. Inhibition of prostate cancer growth by vitamin D: Regulation of target gene expression. J Cell Biochem. 2003; 88(2): 363-371. DOI: https://doi.org/10.1002/jcb.10334
Garland CF, Gorham ED, Mohr SB, and Garland FC. Vitamin D for cancer prevention: Global perspective. Ann Epidemiol. 2009; 19(7):
-483. DOI: https://doi.org/10.1016/j.annepidem.2009.03.021
Zittermann A. Vitamin D in preventive medicine: Are we ignoring the evidence? Br J Nutr 2003; 89(5): 552-572. DOI: https://doi.org/10.1079/bjn2003837
Bikle D. Nonclassic actions of vitamin D. J Clin Endocrinol Metab. 2009; 94(1): 26-34. DOI: https://doi.org/10.1210/jc.2008-1454
National Research Council (NRC). Nutrient requirements for dairy cattle, 7th ed. Washington, DC: National Academy Press; 2001. pp. 164-166.
Littledike ET and Horst RL. Vitamin D3 toxicity in dairy cows. J Dairy Sci. 1982; 65(5): 749-759. DOI: https://doi.org/10.3168/jds.S0022- 0302(82)82263-7
Murphy MJ. Rodenticides. Vet Clin North Am Small Anim Pract. 2002; 32(2): 469-484. DOI: https://doi.org/10.1016/s0195-5616(01)00003-1
Jones G. Pharmacokinetics of vitamin D toxicity. Am J Clin Nutr. 2008; 88(2): 582S-586S. DOI: https://doi.org/10.1093/ajcn/88.2.582s
Uhl EW. The pathology of vitamin D deficiency in domesticated animals: An evolutionary and comparative overview. Int J Paleopathol. 2018; 23: 100-109. DOI: https://doi.org/10.1016/j.ijpp.2018.03.001
Mellanby RJ. Beyond the skeleton: The role of vitamin D in companion animal health. J Small Anim Pract. 2016; 57(4): 175-80. DOI: https://doi.org/10.1111/jsap.12458
Van Saun RJ. Nutritional diseases of South American camelids. Small Rumin Res. 2006; 61(2-3): 153-164. DOI: https://doi.org/10.1016/j.smallrumres.2005.07.007
Norman AW. From vitamin D to hormone D: Fundamentals of the vitamin D endocrine system essential for good health. Am J Clin Nutr. 2008; 88(2): 491S-499S. DOI: https://doi.org/10.1093/ajcn/88.2.491s
Pozza ME, Kaewsakhorn T, Trinarong C, Inpanbutr N, and Toribio RE. Serum vitamin D, calcium, and phosphorus concentrations in ponies, horses and foals from the United States and Thailand. Vet J. 2014; 199(3): 451-456. DOI: https://doi.org/10.1016/j.tvjl.2014.01.002
Effati N, Mohammadi M, Nazifi S, and Rahimabadi E. Serum profiles of calcium, phosphorus, magnesium, vitamin D and parathyroid hormone in Caspian horses during different seasons. Casp J Environ Sci. 2018; 16(1): 85-92. DOI: https://doi.org/10.22124/cjes.2018.2784
Wilkens MR, Marholt L, Eigendorf N, Muscher-Banse AS, Feige K, Schröder B, et al. Trans- and paracellular calcium transport along the small and large intestine in horses. Comp Biochem Physiol a Mol Integr Physiol. 2017; 204: 157-163. DOI: https://doi.org/10.1016/j.cbpa.2016.11.020
Harmeyer J and Schlumbohm, C. Effectsofpharmacologicaldosesof VitaminD3 on mineral balance and profiles of plasma Vitamin D3 metabolites in horses. J Steroid Biochem Mol Biol. 2004; 89-90(1-5): 595-600. DOI: https://doi.org/10.1016/j.jsbmb.2004.03.034
Azarpeykan S, Dittmer KE, Gee EK, Marshall JC, Wallace J, Elder P, et al. Influence of blanketing and season on vitamin D and parathyroid hormone, calcium, phosphorus, and magnesium concentrations in horses in New Zealand. Domest Anim Endocrinol. 2016; 56: 75-84. DOI: https://doi.org/10.1016/j.domaniend.2016.03.003
Kamr AM, Dembek KA, Reed SM, Slovis NM, Zaghawa A, Rosol TJ, et al. Vitamin D metabolites and their association with calcium, phosphorus, and PTH concentrations, severity of illness, and mortality in hospitalized equine neonates. PLoS ONE. 2015; 10(6): e0127684. DOI: https://doi.org/10.1371/journal.pone.0127684
Madson DM, Ensley SM, Gauger PC, Schwartz KJ, Stevenson GW, Cooper VL, et al. Rickets: Case series and diagnostic review of hypovitaminosis D in swine. J Vet Diagn Invest. 2012; 24: 1137-1144. DOI: https://doi.org/10.1177/1040638712461487
Alexander BM, Ingold BC, Young JL, Fensterseifer SR, Wechsler PJ, Austin KJ, et al. Sunlight exposure increases vitamin D sufficiency in growing pigs fed a diet formulated to exceed requirements. Domest Anim Endocrinol. 2017; 59: 37-43. DOI: https://doi.org/10.1016/j.domaniend.2016.10.006
Flohr JR, Woodworth JC, Bergstrom JR, Tokach MD, Dritz SS, Goodband RD, et al. Evaluating the impact of maternal vitamin D supplementation: I. Sow performance, serum vitamin metabolites, and neonatal muscle characteristics. J Anim Sci. 2016; 94(11): 4629- 4642. DOI: https://doi.org/10.2527/jas.2016-0409
Udson GJ and Partington DL. Factors associated with low vitamin D status of Australian alpacas. Aust Vet J 2008; 86(12): 486-490. DOI: https://doi.org/10.1111/j.1751-0813.2008.00367.x
Hill FI, Thompson KG, Grace ND. Rickets in alpacas (Lama paces) in
New Zealand. N Z Vet J. 1994; 42(6): 229-232. DOI:
https://doi.org/10.1080/00480169.1994.35828
Van Saun RJ, Smith BB, and Watrous BJ. Evaluation of vitamin D status of llamas and alpacas with hypophosphatemic rickets. J Am Vet Med Assoc 1996; 209(6): 1128-1133. Available at: https://pubmed.ncbi.nlm.nih.gov/8800263/
Martini M, Iolanda A, Rosario L, and Salari F. Short communication: Technological and seasonal variations of vitamin D and other nutritional components in donkey milk, J Dairy Sci. 2018; 101(10); 8721-8725. DOI: https://doi.org/10.3168/jds.2018-14776
Martini M, Altomonte I, Licitra R, and Salari F. Nutritional and nutraceutical quality of donkey milk. J Equine Vet Sci. 2017; 65: 33- 37. DOI: https://doi.org/10.1016/j.jevs.2017.10.020
Martini M, Altomonte I, Salari F, and Caroli AM. Short communication: Monitoring nutritional quality of Amiata donkey milk: Effects of lactation and productive season. J Dairy Sci. 2014; 97(11): 6819-6822. DOI: https://doi.org/10.3168/jds.2014-8544
Zhou P, Mcevoy TG, Andrew CG, Lambe NR, Morgan-davies CR, Hurst E, et al. Investigation of relationship between vitamin D status and reproductive fitness in Scottish hill sheep. Sci Rep. 2019; 9(1): 1162. DOI: https://doi.org/10.1038/s41598-018-37843-6
Handel I, Watt KA, Pilkington JG, Pemberton JM, MacRae A, Scott P, et al. Vitamin D status predicts reproductive fitness in a wild sheep population. Sci Rep. 2016; 6: 18986. Available at: https://www.nature.com/articles/srep18986
Dittmer KE, Surendran A, Elder PA, and Hoyle TJ. The effect of serum 25-hydroxyvitamin D concentration on fecundity of ewes on a New Zealand sheep farm. Small Rumin Res. 2020; 190: 106149. DOI: https://doi.org/10.1016/j.smallrumres.2020.106149
Herm G, Breves G, Schröder B, Wilkens MR. Renal mechanisms of calcium homeostasis in sheep and goats. J Anim Sci. 2015; 93(4): 1608-1621. DOI: https://doi.org/10.2527/jas.2014-8450
Kohler M, Leiber F, Willems H, Merbold L, and Liesegang A. Influence of altitude on vitamin D and bone metabolism of lactating sheep and goats. J Anim Sci. 2013; 91(11): 5259-5268. DOI: https://doi.org/10.2527/jas.2013-6702
Allott BS, Dittmer KE, Kenyon AG, and Elder PA. Preliminary investigation of the e_ect of treating sheep during pregnancy with a vitamin A, D, E formulation on the incidence of vaginal prolapse. N Z Vet J. 2020; 68(3): 193-197. DOI: https://doi.org/10.1080/00480169.2019.1696719
Lean IJ, DeGaris PJ, Celi P, McNeill DM, Rodney RM, and Fraser DR. Influencing the future: Interactions of skeleton, energy, protein and calcium during late gestation and early lactation. Anim Prod Sci. 2014; 54(9): 1177-1189. Available at: https://www.cabdirect.org/cabdirect/abstract/20143293244
Casas E, Lippolis JD, Kuehn LA, and Reinhardt TA. Seasonal variation in vitamin D status of beef cattle reared in the central United States. Domest Anim Endocrinol. 2015; 52: 71-74. DOI:
https://doi.org/10.1016/j.domaniend.2015.03.003
Weir RR, Strain JJ, Johnston M, Lowis C, Fearon AM, Ireland N, et al. Environmental and genetic factors in fl uence the vitamin D content of cows’ milk proceedings of the nutrition society proceedings of the nutrition society. Proc Nutr Soc. 2017; 76(1): 76-82. Available at: https://www.cambridge.org/core/journals/proceedings-of-the- nutrition-society/article/environmental-and-genetic-factors- influence-the-vitamin-d-content-of-cows- milk/8754AB72F72B6E5AA8C4502C3B77ADAD
Merriman KE, Poindexter MB, Kweh MF, Santos JEP, and Nelson CD. Intramammary 1,25-dihydroxyvitamin D3 treatment increases expression of host-defense genes in mammary immune cells of lactating dairy cattle. J Steroid Biochem Mol Biol. 2017; 173: 33-41. DOI: https://doi.org/10.1016/j.jsbmb.2017.02.006
Corripio-Miyar Y, Mellanby RJ, Morrison K, and McNeilly TN. 1,25- Dihydroxyvitamin D3 modulates the phenotype and function of Monocyte derived dendritic cells in cattle. BMC Vet Res. 2017; 13(1): 390. DOI: https://doi.org/10.1186/s12917-017-1309-8
National Research Council (NRC). Nutrient requirements of domestic animals. Nutrient requirements of poultry, 9th ed, Washington D.C: National Academy Press; 1994.
Aslam SM, Garlich JD, and Qureshi MA. Vitamin D deficiency alters the immune responses of broiler chicks. Poult Sci. 1998; 77(6): 842- 9. DOI: https://doi.org/10.1093/ps/77.6.842
Lillie RJ. Inefficacy of dietary deficiencies of vitamins A, D3 and riboflavin on the reproductive performance of mature cockerels. Poult Sci. 1973; 52(4): 1629-1636. DOI: https://doi.org/10.3382/ps.0521629
Yavas I, Çenesiz AA, and Ceylan N. Effects of herbal vitamin D3 and phytase supplementation to broiler feed on performance, bone development and serum parameters of broilers. J Agric Sci. 2020; 26(22): 212-219. DOI: https://doi.org/10.15832/ankutbd.479182
Schmid A and Walther B. Natural vitamin D content in animal products. Adv Nutr. 2013; 4(4): 453-62. DOI: https://doi.org/10.3945/an.113.003780
Warren MF, Pitman PM, Hodgson DD, and KA Livingston. Super- doses of dietary vitamin D3 intake in aged laying hens illustrates limitation of 24,25-dihydroxycholecalciferol conversion. Livingston bioRxiv. 2021. DOI: https://doi.org/10.1101/2021.10.14.464328
Fritts CA, and Waldroup PW, Effect of Source and Level of Vitamin D on Live Performance and Bone Development in Growing Broilers1, J Appl Poult Res. 2003; 12(1): 45-52. DOI: https://doi.org/10.1093/japr/12.1.45.
Perine TP, Marcato SM, Furlan AC, Grieser DO, Zancanela V, Stanquevis CE, et al. Calcium requirement and vitamin D supplementation in meat-type quail at second stage of growth. Rev Bras Zootec. 2016; 45(11): 655-660. Available at: https://www.scienceopen.com/document?vid=2391e0ee-15d5- 4dab-932f-a93dd23e14af