Potential of Anthelmintic Herbal Drugs against Gastrointestinal Nematodes in Farm Animals: A Review
Main Article Content
Abstract
Gastrointestinal (GI) nematode infections are one of the most prevalent and significant problems in livestock worldwide. This study aimed to review the potential of anthelmintic herbal drugs against gastrointestinal nematodes in farm animals. Anthelmintic drugs are the most common method of controlling GI nematodes since they are simple, cheap, and provide therapeutic and prophylactic protection. However, the problem has become complicated due to the emergence of resistance to anthelmintic drugs because anthelmintic drugs are used indiscriminately to treat parasitic diseases. Anthelmintic resistance in GI nematodes of ruminants is a global problem. Many domestic animals possess multi-class resistance to all classes of anthelmintics. Synthetic anthelmintics could be unsafe as they can cause side effects and toxicity. Therefore, plants are used to develop and discover novel substances acting as anthelmintics. Herbal drugs have become increasingly popular because of their fewer side effects in recent years. Consequently, the demand for herbal formulations of anthelmintic drugs is increasing. The development of instrumental analysis accelerates the preparation of phytochemical constituents and their standardization, and this field is becoming critical for research.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Tinkler SH. Preventive chemotherapy and anthelmintic resistance of soil-transmitted helminths–Can we learn nothing from veterinary medicine?. One Health. 2020; 9: 100106. DOI: https://doi.org/10.1016/j. onehlt.2019.100106
Srivastava M and Misra-Bhattacharya S. Overcoming drug resistance for macro parasites. Future Microbiol. 2015; 10(11): 1783-1789. DOI: https://doi.org/10.2217/fmb.15.73
Verma R, Lata K, and Das G. An overview of anthelmintic resistance in gastrointestinal nematodes of livestock and its management: India perspectives. Int J Chem Stud. 2018; 6(2): 1755-1762. Available at: https://www.chemijournal.com/archives/?year=2018&vol=6&issue= 2&ArticleId=2146&si=false
Sharma DK, Paul S, and Gururaj K. Gastrointestinal helminthic challenges in sheep and goats in afro-asian region: A review. J Anim Res. 2020; 10(1): 1-18. DOI: https://doi.org/10.30954/2277-940X.01.2020.1
Sangster NC, Cowling A, and Woodgate RG. Ten events that defined anthelmintic resistance research. Trends Parasitol. 2018; 34(7): 553- 563. DOI: https://doi.org/10.1016/j.pt.2018.05.001
Coles G, Jackson F, Pomroy W, Prichard R, von Samson-Himmelstjerna
G, Silvestre A, et al. The detection of anthelmintic resistance in nematodes of veterinary importance. Vet Parasitol. 2006; 136(3-4): 167-85. DOI: https://doi.org/10.1016/j.vetpar.2005.11.019
Hoste H, Torres-Acosta J, Quijada J, Chan-Perez I, Dakheel M, Kommuru D, et al. Interactions between nutrition and infections with Haemonchus contortus and related gastrointestinal nematodes in small ruminants. Adv Parasitol. 2016; 93: 239-351. DOI: https://doi.org/10.1016/bs.apar.2016.02.025
Hoste H, Torres-Acosta J, Paolini V, Aguilar-Caballero A, Etter E, Lefrileux Y, et al. Interactions between nutrition and gastrointestinal infections with parasitic nematodes in goats. Small Rumin Res. 2005; 60(1-2): 141-151. DOI: https://doi.org/10.1016/j.smallrumres.2005.06.008
Gurib-Fakim A. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Mol Aspects Med. 2006; 27(1): 1-93. DOI: https://doi.org/10.1016/j.mam.2005.07.008
Pink R, Hudson A, Mouriès M-A, and Bendig M. Opportunities and challenges in antiparasitic drug discovery. Nat Rev Drug Discov. 2005; 4(9): 727-740. DOI: https://doi.org/10.1038/nrd1824
Ali R, Khan S, Khan M, Adnan M, Ali I, Khan TA, et al. A systematic review of medicinal plants used against Echinococcus granulosus. PLoS One. 2020; 15(10): e0240456. DOI: https://doi.org/10.1371/journal.pone.0240456
Mukherjee N, Mukherjee S, Saini P, Roy P, P Sinha, and Babu S. Phenolics and terpenoids; the promising new search for anthelmintics: A critical review. Mini Rev Med Chem. 2016; 16(17): 1415-1441. DOI: https://doi.org/10.2174/1389557516666151120121036
Sofowora A, Ogunbodede E, and Onayade A. The role and place of medicinal plants in the strategies for disease prevention. Afr J Tradit Complement Altern Med. 2013; 10(5): 210-229. DOI: https://doi.org/10.4314/ajtcam.v10i5.2
Horton J. Albendazole: A review of anthelmintic efficacy and safety in humans. Parasitology. 2000; 121(S1): S113-S132. DOI: https://doi.org/10.1017/s0031182000007290
Bagheri H, Simiand E, Montastruc J-L, and Magnaval J-F. Adverse drug reactions to anthelmintics. Ann Pharmacother. 2004; 38(3): 383-388. DOI: https://doi.org/10.1345/aph.1d325
van den Enden E. Pharmacotherapy of helminth infection. Expert Opin Pharmacother. 2009; 10(3): 435-451. DOI: https://doi.org/10.1517/1465656 0902722463
McCarthy J, Loukas A, and Hotez PJ. Chemotherapy of helminth infections. In: Brunton LL, Chabner BA, Knollmann BC, editors. Goodman and Gilman’s: The pharmacological basis of therapeutics. 11th ed. New York: McGraw-Hill; 2006, p. 1073-1093. Available at: https://accessmedicine.mhmedical.com/Content.aspx?bookid=1613& sectionid=102163040
Adam I, Elwasila ET, and Homeida M. Is praziquantel therapy safe during pregnancy?. Trans R Soc Trop Med Hyg. 2004; 98(9): 540-453. DOI: https://doi.org/10.1016/j.trstmh.2004.01.001
Makenga Bof J-C, Muteba D, Mansiangi P, Ilunga-Ilunga F, and Coppieters Y. Analysis of severe adverse effects following community- based ivermectin treatment in the Democratic Republic of Congo. BMC Pharmacol Toxicol. 2019; 20(1): 49. DOI: https://doi.org/10.1186/s40360-019- 0327-5
Karale S, Bansal V, Makadia J, Tayyeb M, Khan H, Ghanta SS, et al. A meta-analysis of mortality, need for ICU admission, use of mechanical ventilation and adverse effects with ivermectin use in COVID-19 patients. 2021. DOI: https://doi.org/10.1101/2021.04.30.21256415
Dongare PN, Motule AS, Dubey MR, More MP, Patinge PA, Bakal RL, et al. Recent development in novel drug delivery systems for delivery of herbal drugs: An update. GSC Adv Res Rev. 2021; 8(2): 8-18. DOI: https://doi.org/10.30574/gscarr.2021.8.2.0158
Shalaby HA. Anthelmintics resistance: How to overcome it?. Iran J Parasitol. 2013; 8(1): 18-32. Available at: https://pubmed. ncbi.nlm.nih.gov/23682256/
Ali BH, Blunden G, Tanira MO, and Nemmar A. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): A review of recent research. Food Chem Toxicol. 2008; 46(2): 409-420. DOI: https://doi.org/10.1016/j.fct.2007.09.085
Pal D, Mishra P, Sachan N, and Ghosh AK. Biological activities and medicinal properties of Cajanus cajan (L) Millsp. J Adv Pharm Technol Res. 2011; 2(4): 207-214. DOI: https://doi.org/10.4103%2F2231-4040.90874
Ahmad Khan MS and Ahmad I. Herbal medicine: Current trends and future prospects. New look to phytomedicine. Elsevier; 2019. p. 3-13. DOI: https://doi.org/10.1016/B978-0-12-814619-4.00001-X
Hamad KK, Iqbal Z, Abbas RZ, Khan A, Muhammad G, and Epperson B. Combination of Nicotiana tabacum and Azadirachta indica: A novel substitute to control levamisole and ivermectin-resistant haemonchus contortus in Ovine. Pak Vet J. 2014; 34(1): 24-29. Available at: http://www.pvj.com.pk/pdf-files/34_1/24-29.pdf
Nouri F, Nourollahi-Fard SR, Foroodi HR, and Sharifi H. In vitro anthelmintic effect of Tobacco (Nicotiana tabacum) extract on parasitic nematode, Marshallagia marshalli. J Parasit Dis. 2016; 40(3): 643-647. DOI: https://doi.org/10.1007/s12639-014-0550-3
Schorderet Weber S, Kaminski KP, Perret JL, Leroy P, Mazurov A, Peitsch MC, et al. Antiparasitic properties of leaf extracts derived from selected Nicotiana species and Nicotiana tabacum varieties. Food Chem Toxicol. 2019; 132: 110660. DOI: https://doi.org/10.1016/j.fct.2019.110660
Enejoh O and Suleiman M. Anthelmintics and their application in veterinary medicine. Res Med Eng Sci. 2017; 2(3): 117-126. DOI: https://doi.org/10.31031/RMES.2017.02.000536
El Shenawy NS, Soliman MF, and Reyad SI. The effect of antioxidant properties of aqueous garlic extract and Nigella sativa as anti- schistosomiasis agents in mice. Rev Inst Med Trop Sao Paulo. 2008; 50(1): 29-36. DOI: https://doi.org/10.1590/s0036-46652008000100007
Hazaa I, Al-Taai N, Khalil NK, and Zakri A. Efficacy of garlic and onion oils on murin experimental Cryptosporidium parvum infection. Al-Anbar J Vet Sci. 2016; 9(2): 69-74. Available at: https://www.iasj.net/iasj/download/644bcac1c421a73d
Anthony J-P, Fyfe L, and Smith H. Plant active components–a resource for antiparasitic agents?. Trends Parasitol. 2005; 21(10): 462-468. DOI: https://doi.org/10.1016/j.pt.2005.08.004
Kamel RO and El-Shinnawy NA. Immunomodulatory effect of garlic oil extract on Schistosoma mansoni infected mice. Asian Pac J Trop Med. 2015; 8(12): 999-1005. DOI: https://doi.org/10.1016/j.apjtm.2015.11.016
Gaafar MR. Efficacy of Allium sativum (garlic) against experimental cryptosporidiosis. Alex J Med. 2012; 48(1): 59-66. DOI: https://doi.org/10.1016/j.ajme.2011.12.003
Jalalpure S, Alagawadi KR, Mahajanashetti CS, Shah BN, Salahuddin, Singh V, et al. In vitro anthelmintic property of various seed oils against Pheritima posthuma. Indian J Pharm Sci. 2007; 69(1): 158- 160. DOI: https://doi.org/10.4103/0250-474X.32138
Swarnkar C, Singh D, Khan F, and Bhagwan P. Anthelmintic potential of Embelia ribes seeds against Haemonchus contortus of sheep. Indian J Anim Sci. 2009; 79(2): 167-170. Available at: https://www.cabdirect.org/cabdirect/abstract/20093061550
Tandon V, Yadav A, Roy B, and Das B. Phytochemicals as cure of worm infections in traditional medicine systems. New Delhi: Emerging trends in zoology Narendra Publishing House; 2011. p. 351-378.
Ambati S, Jyothi V, and Jyothi V. Pharmacological, pharmacognostic and phytochemical review of Embelia ribes. Int J Pharm Technol. 2010; 2(4): 525-539. Available at: https://www.cabdirect.org/ cabdirect/ abstract/20113145820
Sambodo P, Prastowo J, Kurniasih, Mubarokah w, and Indarjulianto S. In vivo efficacy of Biophytum petersianum on Haemonchus contortus in goats. 2020; 11(1): 1-4. Available at: http://repository.unipa.ac.id: 8080/ xmlui/handle/123456789/428
Mubarokah WW, Nurcahyo W, Prastowo J, and Kurniasih K. In vitro and in vivo Areca catechu crude aqueous extract as an anthelmintic against Ascaridia galli infection in chickens. Vet world. 2019; 12(6): 877-882. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6661480/
Grønhaug TE, Glaeserud S, Skogsrud M, Ballo N, Bah S, Diallo D, et al. Ethnopharmacological survey of six medicinal plants from Mali, West- Africa. J Ethnobiol Ethnomed. 2008; 4: 26. DOI: https://doi.org/10.1186/1746-4269- 4-26
Sambodo P, Prastowo J, Kurniasih K, and Indarjulianto S. In vitro potential anthelmintic activity of Biophytum petersianum on Haemonchus contortus. Vet World. 2018; 11(1): 1-4. DOI: https://doi.org/10.14202/vetworld.2018.1-4
Nandhini A and Sumathi C. An overview of herbals used in helminthiasis. World Journal of Pharmaceutical Research. 2014; 3(10): 350-362. Available at: https://wjpr.s3.ap-south- 1.amazonaws.com/article_issue/1417771162.pdf
Nirala RK, Raj P, Anjana K, and Mandal K. Medicinal plants and its activity against helminth: A review. J Pharmacogn Phytochem. 2019; 8(5): 2348-2355. Available at: https://www.phytojournal.com/ archives/2019.v8.i5.9948/medicinal-plants-and-its-activity-against- helminth-a-review
Al-Snafi AE. Antiparasitic effects of medicinal plants (part 1)-A review. IOSR J Pharma. 2016; 6(10): 51-66.
Chauhan S, Singh VS, and Thakur V. Effect of Calotropis procera (madar) and amprolium supplementation on parasitological parameters of broilers during mixed Eimeria species infection. Vet World. 2017; 10(8): 864-868. DOI: https://doi.org/10.14202/vetworld.2017.864-868
Cavalcante GS, de Morais SM, Andre WP, Ribeiro WL, Rodrigues AL, De Lira FC, et al. Chemical composition and in vitro activity of Calotropis procera (Ait.) latex on Haemonchus contortus. Vet Parasitol. 2016; 226: 22-25. DOI: https://doi.org/10.1016/j.vetpar.2016.06.012
Maciel M, Morais SM, Bevilaqua C, Camurça-Vasconcelos A, Costa C, and Castro C. Ovicidal and larvicidal activity of Melia azedarach extracts on Haemonchus contortus. Vet Parasitol. 2006; 140(1-2): 98- 104. DOI: https://doi.org/10.1016/j.vetpar.2006.03.007
Szewezuk V, Mongelli ER, and Pomilio AB. Antiparasitic activity of Melia azadirach growing in Argentina. Mol Med Chem. 2003; 1(1): 54-
Available at: http://www.idecefyn.com.ar/mmcv01/12.pdf
Cala AC, Chagas AC, Oliveira MC, Matos AP, Borges LM, Sousa LA, et al. In vitro anthelmintic effect of Melia azedarach L. and Trichilia claussenii C. against sheep gastrointestinal nematodes. Exp Parasitol. 2012; 130(2): 98-102. DOI: https://doi.org/10.1016/j.exppara.2011.12.011
Kamaraj C, Rahuman AA, Bagavan A, Mohamed MJ, Elango G, Rajakumar G, et al. Ovicidal and larvicidal activity of crude extracts of Melia azedarach against Haemonchus contortus (Strongylida). Parasitol Res. 2010; 106(5): 1071-1077. DOI: https://doi.org/10.1007/s00436-010- 1750-0
Gill N, Dhiman K, Bajwa J, Sharma P, and Sood S. Evaluation of free radical scavenging, anti-inflammatory and analgesic potential of Benincasa hispida seed extract. Int J Pharmacol. 2010; 6(5): 652-657. Available at: https://www.cabdirect.org/cabdirect/abstract/20113060170
Palamthodi S and Lele S. Nutraceutical applications of gourd family vegetables: Benincasa hispida, Lagenaria siceraria and Momordica charantia. Biomed Prev Nutr. 2014; 4(1): 15-21. DOI: https://doi.org/10.1016/j.bionut.2013.03.004
Tatiya A and Saluja A. Evaluation of phytochemical standards and in vitro antioxidant activity of tannins rich fraction of stem bark of Bridelia retusa (Li). Int J Pharmtech Res. 2010; 2(1): 649-655. Available at: https://www.cabdirect.org/cabdirect/abstract/20103302267
Patel J, Kumar G, Deviprasad S, Deepika S, and Qureshi MS. Phytochemical and anthelmintic evaluation of Lantana camara (L.) var. aculeate leaves against Pheretima posthuma. J Glob Trends Pharm Sci. 2011; 2(1): 11-20. Available at: https://www.jgtps.com/admin/uploads/FfX5nJ.pdf
Macedo ITF, Oliveira LMBd, Camurça-Vasconcelos ALF, Ribeiro WLC, Santos JMLd, Morais SMd, et al. In vitro effects of Coriandrum sativum, Tagetes minuta, Alpinia zerumbet and Lantana camara essential oils on Haemonchus contortus. Rev Bras Parasitol Vet. 2013; 22: 463-469. Available at: https://www.redalyc.org/pdf/3978/397841490003.pdf
Macedo IT, Bevilaqua CM, de Oliveira LM, Camurça-Vasconcelos AL, Morais SM, Machado LK, et al. In vitro activity of Lantana camara, Alpinia zerumbet, Mentha villosa and Tagetes minuta decoctions on Haemonchus contortus eggs and larvae. Veterinary Parasitology. 2012; 190(3-4): 504-509. DOI: https://doi.org/10.1016/j.vetpar.2012.07.001
Ngwewondo A, Wang M, Manfo FPT, Samje M, Ganin’s JN, Ndi E, et al. Filaricidal properties of Lantana camara and Tamarindus indica extracts, and Lantadene A from L. camara against Onchocerca ochengi and Loa loa. PLoS Negl Trop Dis. 2018; 12(6): e0006565. DOI: https://doi.org/10.1371/journal.pntd.0006565
Teschke R and Xuan TD. Viewpoint: A contributory role of shell ginger (Alpinia zerumbet (Pers.) B.L. Burtt & R.M. Sm) for human longevity in Okinawa, Japan? Nutrients. 2018; 10(2): 166. DOI: https://doi.org/10.3390/nu10020166