Challenges in the Definition and Measurement of Subacute Ruminal Acidosis in Holstein Dairy Cows: A Review

Main Article Content

Sayyed Mahmoud Nasrollahi


Subacute ruminal acidosis can be defined as a depression of rumen pH, which affects animal health and production. Although researchers have tried to find a solution for this disorder, it is a prevalent problem that causes considerable losses in commercial dairy cow production. This review aims to reveal critical points in current knowledge about subacute ruminal acidosis and suggest solutions for future research. The first challenging issue in subacute ruminal acidosis is the diagnosis method of this disorder, which requires appropriate statistical evaluation and modeling. In addition, biological factors should be considered to define subacute ruminal acidosis since some roles have recently been observed for different CO2 species in the rumen as a direct cause of the events. These CO2 species are sometimes more accurate than rumen pH in explaining the decrease in feed intake, milk yield, milk fat percentage, and inflammation responses. In the future, the measuring of the CO2 species in the rumen may be a replacement for pH measurement or become a factor that can greatly explain ruminal acidosis. Compared to basic methods, another challenging point is the reliability of rumen pH measurements as well as the accuracy of newly developed sensors. The reticular pH with current boluses could be measured by monitoring cows on-farm or a large number of animals in research. In conclusion, a thorough definition and precise application of new measurement devices can reveal some unknown factors for subacute ruminal acidosis in dairy cows.  

Article Details

How to Cite
Nasrollahi, S. M. (2023). Challenges in the Definition and Measurement of Subacute Ruminal Acidosis in Holstein Dairy Cows: A Review. Farm Animal Health and Nutrition, 2(4), 63–70.
Review Article


Plaizier J, Krause D, Gozho G, and McBride B. Subacute ruminal acidosis in dairy cows: the physiological causes, incidence and consequences. Vet J. 2008; 176: 21-31. DOI: 10.1016/j.tvjl.2007.12.016

Plaizier JC, Danesh Mesgaran M, Derakhshani H, Golder H, Khafipour E, Kleen JL et al. Review: Enhancing gastrointestinal health in dairy cows. Animal. 2018; 12: s399-s418. DOI: 10.1017/S1751731118001921

Van Soest PJ. Nutritional ecology of the ruminant, Cornell university press; 1994. DOI: 10.7591/9781501732355

Golder H, LeBlanc S, Duffield T, Rossow H, Bogdanich R, Hernandez L et al. Characterizing ruminal acidosis risk: A multiherd, multicountry study. J Dairy Sci. 2023; 106: 3155-3175. DOI: 10.3168/jds.2022-22571

Kitkas GC, Valergakis GE, Karatzias H, and Panousis N. Subacute ruminal acidosis: prevalence and risk factors in Greek dairy herds. Iranian J Vet Res. 2013; 14, 183-189.

Kleen JL, Upgang L, and Rehage J. Prevalence and consequences of subacute ruminal acidosis in German dairy herds. Acta Vet Scand . 2013; 55: 48. DOI: 10.1186/1751-0147-55-48

Stefańska B, Pruszyńska-Oszmałek E, Szczepankiewicz D, Stajek K, Stefański P, Gehrke M et al. Relationship between pH of ruminal fluid during subacute ruminal acidosis and physiological response of the Polish Holstein-Friesian dairy cows. Pol J Vet Sci. 2017; 20: 551-558. DOI: 10.1515/pjvs-2017-0067

Rojo-Gimeno C, Fievez V, and Wauters E. The economic value of information provided by milk biomarkers under different scenarios: Case-study of an ex-ante analysis of fat-to-protein ratio and fatty acid profile to detect subacute ruminal acidosis in dairy cows. Livest Sci. . 2018; 211: 30-41. DOI: 10.1016/j.livsci.2018.02.001

Srivastava R, Singh P, Tiwari S, and Kumar DMG. Sub-acute ruminal acidosis: Understanding the pathophysiology and management with exogenous buffers. J entomol zool stud. 2021; 9(2): 593-599. DOI: 10.22271/j.ento.2021.v9.i2i.8537

Laporte-Uribe JA. Rumen CO2 species equilibrium might influence performance and be a factor in the pathogenesis of subacute

ruminal acidosis. Transl Anim Sci. 2019; 3: 1081-1098. DOI: 10.1093/tas/txz144

Sun YY, Cheng M, Xu M, Song LW, Gao M, and Hu HL. The effects of subacute ruminal acidosis on rumen epithelium barrier function

in dairy goats. Small Rumin Res. 2018; 169: 1-7. DOI: 10.1016/j.smallrumres.2018.09.017

Humer E, Petri R, Aschenbach J, Bradford B, Penner G, Tafaj M et al. Invited review: Practical feeding management recommendations to mitigate the risk of subacute ruminal acidosis in dairy cattle. J Dairy Sci. 2018; 101: 872-888. DOI: 10.3168/jds.2017-13191

Luan S, Cowles K, Murphy MR, and Cardoso FC. Effect of a grain challenge on ruminal, urine, and fecal pH, apparent total-tract starch digestibility, and milk composition of Holstein and Jersey cows. J Dairy Sci. 2016; 99: 2190-2200. DOI: 10.3168/jds.2015-9671

Nasrollahi S, Imani M, and Zebeli Q. A meta-analysis and meta-regression of the impact of particle size, level, source and preservation method of forages on chewing behavior and ruminal fermentation in dairy cows. Anim Feed Sci Technol. 2016; 219: 144-158. DOI: 10.1016/j.anifeedsci.2016.06.012

Stauder A, Humer E, Neubauer V, Reisinger N, Kaltenegger A, and Zebeli Q. Distinct responses in feed sorting, chewing behavior, and ruminal acidosis risk between primiparous and multiparous Simmental cows fed diets differing in forage and starch levels. J Dairy Sci. 2020; 103: 8467-8481. DOI: 10.3168/jds.2019-17760

Laporte-Uribe JA. The role of dissolved carbon dioxide in both the decline in rumen pH and nutritional diseases in ruminants. Anim Feed Sci Technol. 2016; 219: 268-279. DOI: 10.1016/j.anifeedsci.2016.06.026

Neubauer V, Humer E, Kröger I, Braid T, Wagner M, and Zebeli Q. Differences between pH of indwelling sensors and the pH of fluid and solid phase in the rumen of dairy cows fed varying concentrate

levels. J Anim Physiol Anim Nutr. 2018; 102: 343-349. DOI: 10.1111/jpn.12675

Nasrollahi S, Zali A, Ghorbani G, Shahrbabak MM, and Abadi MHS. Variability in susceptibility to acidosis among high producing mid-lactation dairy cows is associated with rumen pH, fermentation, feed intake, sorting activity, and milk fat percentage. Anim Feed Sci Technol. 2017; 228, 72-82. DOI:

Falk M, Münger A, and Dohme-Meier F. A comparison of reticular and ruminal pH monitored continuously with 2 measurement systems at different weeks of early lactation. J Dairy Sci. 2016; 99: 1951-1955. DOI: 10.3168/jds.2015-9725

Hungate R, Dougherty R, Bryant M, and Cello R. Microbiological and physiological changes associated with acute indigestion

in sheep. Cornell Vet. 1952; 42: 423-449. Available at:

Russell JB, and Wilson DB. Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH?. J Dairy Sci. 1996; 79: 1503-1509. DOI: 10.3168/jds.S0022-0302(96)76510-4

Khafipour E, Krause D, and Plaizier J. A grain-based subacute ruminal acidosis challenge causes translocation of lipopolysaccharide and triggers inflammation. J Dairy Sci. 2009b; 92: 1060-1070. DOI: 10.3168/jds.2008-1389

Li S, Khafipour E, Krause D, Kroeker A, Rodriguez-Lecompte J, Gozho G et al. Effects of subacute ruminal acidosis challenges on fermentation and endotoxins in the rumen and hindgut of dairy cows. J Dairy Sci. 2012; 95: 294-303. DOI: 10.3168/jds.2011-4447

Khafipour E, Krause D, and Plaizier J. Alfalfa pellet-induced subacute ruminal acidosis in dairy cows increases bacterial endotoxin in the rumen without causing inflammation. J Dairy Sci. 2009a; 92: 1712-1724. DOI: 10.3168/jds.2008-1656

Beauchemin K. Invited review: Current perspectives on eating and rumination activity in dairy cows. J Dairy Sci. 2018; 101: 4762-4784. DOI: 10.3168/jds.2017-13706

Khafipour E, Li S, Plaizier JC, and Krause DO. Rumen microbiome composition determined using two nutritional models of subacute ruminal acidosis. Appl Environ Microbiol. 2009c; 75: 7115-7124. DOI: 10.1128/AEM.00739-09

Sun YZ, Mao SY, and Zhu WY. Rumen chemical and bacterial changes during stepwise adaptation to a high-concentrate diet in goats. Animal. 2010; 4: 210-217. DOI: 10.1017/S175173110999111X

Plaizier JC, Li S, Tun HM, and Khafipour E. Nutritional models of experimentally-induced subacute ruminal acidosis (SARA) differ in their impact on rumen and hindgut bacterial communities

in dairy cows. Front Microbiol. 2017; 7: 2128. DOI: 10.3389/fmicb.2016.02128

Monteiro HF, and Faciola AP. Ruminal acidosis, bacterial changes, and lipopolysaccharides. J Anim Sci. 2020; 98: skaa248. DOI: 10.1093/jas/skaa248

Sarmikasoglou E, and Faciola AP. Ruminal lipopolysaccharides analysis: Uncharted waters with promising signs. Animals. 2021; 11: 195. DOI: 10.3390/ani11010195

Calsamiglia S, Blanch M, Ferret A, and Moya D. Is subacute ruminal acidosis a pH related problem? Causes and tools for its control. Anim Feed Sci Technol. 2012; 172: 42-50. DOI: 10.1016/j.anifeedsci.2011.12.007

Krause KM, and Oetzel GR. Inducing subacute ruminal acidosis in lactating dairy cows. J Dairy Sci. 2005; 88: 3633-3639. DOI: 10.3168/jds.S0022-0302(05)73048-4

Zhao C, Liu G, Li X, Guan Y, Wang Y, Yuan X et al. Inflammatory mechanism of Rumenitis in dairy cows with subacute ruminal acidosis. BMC Veterinary Research. 2018; 14: 135. DOI: 10.1186/s12917-018-1463-7

Esmaeili M, Khorvash M, Ghorbani GR, Nasrollahi SM, and Saebi M. Variation of TMR particle size and physical characteristics in commercial Iranian Holstein dairies and effects on eating behaviour, chewing activity, and milk production. Livest Sci. 2016; 191: 22-28. DOI: 10.1016/j.livsci.2016.07.003

O’Grady L, Doherty ML, and Mulligan FJ. Subacute ruminal acidosis (SARA) in grazing Irish dairy cows. Vet J. 2008; 176: 44-49. DOI: 10.1016/j.tvjl.2007.12.017

Nordlund KV, and Garrett EF. Rumenocentesis: A technique for the diagnosis of subacute rumen acidosis in dairy herds. Bov pract. 1994; 28: 109-112. DOI: 10.21423/bovine-vol1994no28p109-112

Garrett E, Pereira M, Nordlund K, Armentano L, Goodger W, and Oetzel G. Diagnostic methods for the detection of subacute ruminal acidosis in dairy cows. J Dairy Sci. 1999; 82: 1170-1178. DOI: 10.3168/jds.S0022-0302(99)75340-3

Dijkstra J, Van Gastelen S, Dieho K, Nichols K, and Bannink A. Rumen sensors: data and interpretation for key rumen metabolic processes. Animal. 2020; 14: s176-s186. DOI: 10.1017/S1751731119003112

Stone W. Nutritional approaches to minimize subacute ruminal acidosis and laminitis in dairy cattle. J Dairy Sci. 2004; 87: E13-E26. DOI: 10.3168/jds.S0022-0302(04)70057-0

Hollberg W. Comparative studies of rumen fluid samples obtained by using the Schambye-Sorensen sonde or by puncture of the caudoventral rumen sac. Dtsch Tierarztl Wochenschr. 1984; 91: 317-320. Available at:

Aceto H, Simeone A, and Fergusson J. Effect of rumenocentesis on health and productivity in dairy cows. J Anim Sci. 2000; 83(Suppl. 1): 40.

Stefańska B, Gąsiorek M, Kański J, Komisarek J, and Nowak W. Comparison of pH, volatile fatty acids, and ammonia in preweaning and postweaning ruminal fluid samples obtained via rumenocentesis and stomach tube from dairy calves. Livest Sci. 2019; 230: 103822. DOI: 10.1016/j.livsci.2019.103822

Gianesella M, Morgante M, Cannizzo C, Stefani A, Dalvit P, Messina V et al. Subacute ruminal acidosis and evaluation of blood gas analysis in dairy cow. Vet Med Int. 2010; 2010: 392371. DOI: 10.4061/2010/392371

Panousis N, Kitkas G, and Valergakis G. Is rumenocentesis a safe technique to collect rumen fluid in dairy cows?. J Hellenic Vet Med Soc. 2018; 69: 1135-1140. DOI: 10.12681/jhvms.18886

Mottram T, Lowe J, McGowan M, and Phillips N. A wireless telemetric method of monitoring clinical acidosis in dairy cows. Comput Electron Agric. 2008; 64: 45-48. DOI: 10.1016/j.compag.2008.05.015

Sato S. Pathophysiological evaluation of subacute ruminal acidosis (SARA) by continuous ruminal pH monitoring. Anim Sci J. 2016; 87: 168-177. DOI: 10.1111/asj.12415

Cheng K, and Zhu D. On calibration of pH meters. Sensors. 2005; 5: 209-219. DOI: 10.3390/s5040209

Dijkstra J, Ellis J, Kebreab E, Strathe A, Lopez S, France J et al. Ruminal pH regulation and nutritional consequences of low pH. Anim Feed Sci Technol. 2012; 172: 22-33. DOI: 10.1016/j.anifeedsci.2011.12.005

Allen MS. Relationship between fermentation acid production in the rumen and the requirement for physically effective fiber. J Dairy Sci. 1997; 80: 1447-1462. DOI: 10.3168/jds.S0022-0302(97)76074-0

Agmon N, Bakker HJ, Campen RK, Henchman RH, Pohl P, Roke S et al. Protons and hydroxide ions in aqueous systems. Chem Rev. 2016; 116: 7642-7672. DOI: 10.1021/acs.chemrev.5b00736

Covington AK, Bates R, and Durst R. Definition of pH scales, standard reference values, measurement of pH and related terminology. Pure Appl Chem. 1985; 57: 531-542. DOI: 10.1351/pac198557030531

Valsaraj KT, and Melvin EM. Elements of environmental engineering: thermodynamics and kinetics, CRC Press; 2000.

Kohn R, and Dunlap T. Calculation of the buffering capacity of bicarbonate in the rumen and in vitro. J Anim Sci. 1998; 76: 1702-1709. DOI: 10.2527/1998.7661702x

Hille KT, Hetz SK, Rosendahl J, Braun HS, Pieper R, and Stumpff F. Determination of Henry’s constant, the dissociation constant, and the buffer capacity of the bicarbonate system in ruminal fluid. J Dairy Science. 2016; 99: 369-385. DOI: 10.3168/jds.2015-9486

Cheng KJ, Hironaka R, Jones G, Nicas T, and Costerton J. Frothy feedlot bloat in cattle: production of extracellular polysaccharides and development of viscosity in cultures of Streptococcus bovis. Can J Microbiol. 1976; 22: 450-459. DOI: 10.1139/m76-071

Zebeli Q, Mansmann D, Steingass H, and Ametaj B. Balancing diets for physically effective fibre and ruminally degradable starch: A key to lower the risk of sub-acute rumen acidosis and improve productivity of dairy cattle. Livest Sci. 2010; 127: 1-10. DOI: 10.1016/j.livsci.2009.09.003

Samuelov N, Lamed R, Lowe S, and Zeikus J. Influence of CO2-HCO3− levels and pH on growth, succinate production, and enzyme activities of Anaerobiospirillum succiniciproducens. Appl Environ Microbiol. 1991; 57: 3013-3019. DOI: 10.1128/aem.57.10.3013-3019.1991

Song H, Lee JW, Choi S, You JK, Hong WH, and Lee SY. Effects of dissolved CO2 levels on the growth of Mannheimia succiniciproducens and succinic acid production. Biotechnol Bioeng. 2007; 98: 1296-1304. DOI: 10.1002/bit.21530

De Veth M, and Kolver E. Diurnal variation in pH reduces digestion and synthesis of microbial protein when pasture is fermented in continuous culture. J Dairy Sci. 2001; 84: 2066-2072. DOI: 10.3168/jds.S0022-0302(01)74651-6

Calsamiglia S, Ferret A, and Devant M. Effects of pH and pH fluctuations on microbial fermentation and nutrient flow from a dual-flow continuous culture system. J Dairy Sci. 2002; 85: 574-579. DOI: 10.3168/jds.S0022-0302(02)74111-8

National research council. (NRC) I. Nutrient requirements of dairy cattle. 2001.

Takahashi S, Abbe K, and Yamada T. Purification of pyruvate formate-lyase from Streptococcus mutans and its regulatory properties. J Bacteriol. 1982; 149: 1034-1040. DOI: 10.1128/jb.149.3.1034-1040.1982

Turner A, and Hodgetts VE. Buffer systems in the rumen of sheep. I. pH and bicarbonate concentration in relationship to pCO2. Aust J Agric Res. 1955; 6: 115-124. DOI: 10.1071/AR9550115

Endeward V, Al-Samir S, Itel F, and Gros G. How does carbon dioxide permeate cell membranes? A discussion of concepts, results and methods. Front Physiol. 2014; 4: 382. DOI: 10.3389/fphys.2013.00382

Veenhuizen JJ, Russell RW, and Young JW. Kinetics of metabolism of glucose, propionate and CO2 in steers as affected by injecting phlorizin and feeding propionate. J Nutr. 1988; 118: 1366-1375. DOI: 10.1093/jn/118.11.1366

Whitelaw F, Brockway J, and Reid R. Measurement of carbon dioxide production in sheep by isotope dilution. Q J Exp Physiol Cogn Med Sci. 1972; 57: 37-55. DOI: 10.1113/expphysiol.1972.sp002136

Bailey R, and Oxford A. A quantitative study of the production of dextran from sucrose by rumen strains of Streptococcus bovis. Microbiology. 1958; 19: 130-145. DOI: 10.1099/00221287-19-1-130

Rose IA, and Kuo DJ. Role of carbon dioxide in proton activation by histidine decarboxylase (pyruvoyl). Biochemistry. 1992; 31: 5887-5892. DOI: 10.1021/bi00140a026

Rackwitz R, and Gäbel G. Effects of dissolved carbon dioxide on the integrity of the rumen epithelium: An agent in the development of ruminal acidosis. J Anim Physiol Anim Nutr. 2018; 102: e345-e352. DOI: 10.1111/jpn.12752

Liu Y, Chacko BK, Ricksecker A, Shingarev R, Andrews E, Patel RP et al. Modulatory effects of hypercapnia on in vitro and in vivo pulmonary endothelial–neutrophil adhesive responses during inflammation. Cytokine. 2008; 44: 108-117. DOI: 10.1016/j.cyto.2008.06.016

Abolhassani M, Guais A, Chaumet-Riffaud P, Sasco AJ, and Schwartz L. Carbon dioxide inhalation causes pulmonary inflammation. Am J Physiol Lung Cell Mol Physiol. 2009; 296: L657-65. DOI: 10.1152/ajplung.90460.2008

Wang X, Wu J, Li L, Chen F, Wang R, and Jiang C. Hypercapnic acidosis activates KATP channels in vascular smooth muscles. Circ Res. 2003; 92: 1225-1232. DOI: 10.1161/01.RES.0000075601.95738.6D

Chuang IC, Dong HP, Yang RC, Wang TH, Tsai JH, Yang PH et al. 2010. Effect of carbon dioxide on pulmonary vascular tone at various pulmonary arterial pressure levels induced by endothelin-1. Lung. 188: 199-207. DOI: 10.1007/s00408-010-9234-7

Dionissopoulos L, Laarman AH, Alzahal O, Greenwood SL, Steele MA, Plaizier JC et al. Butyrate-mediated genomic changes involved in non-specific host defenses, matrix remodeling and the immune response in the rumen epithelium of cows afflicted with Subacute Ruminal Acidosis. Am J Anim Vet Sci. 2013; 8: 8-27. DOI: 10.3844/ajavsp.2013.8.27

Wang R, Wang M, Zhang XM, Wen JN, Ma ZY, Long DL et al. Effects of rumen cannulation on dissolved gases and methanogen community

in dairy cows. J Dairy Sci. 2019; 102: 2275-2282. DOI: 10.3168/jds.2018-15187

Buchholz, Graf M, Blombach B, and Takors R. Improving the carbon balance of fermentations by total carbon analyses. Biochem Eng J. 2014; 90: 162-169. DOI: 10.1016/j.bej.2014.06.007

Zhang Z, Niu X, Li F, Li F, and Guo L. Ruminal cellulolytic bacteria abundance leads to the variation in fatty acids in the rumen digesta and meat of fattening lambs. J Anim Sci. 2020; 98: skaa228. DOI: 10.1093/jas/skaa228

Colman E, Khafipour E, Vlaeminck B, De Baets B, Plaizier J, and Fievez V. Grain-based versus alfalfa-based subacute ruminal acidosis induction experiments: Similarities and differences between changes in milk fatty acids. J Dairy Sci. 2013; 96: 4100-4111. DOI: 10.3168/jds.2012-6109

Krause KM, and Oetzel GR. Understanding and preventing subacute ruminal acidosis in dairy herds: A review. Anim Feed Sci Technol. 2006; 126: 215-236. DOI: 10.1016/j.anifeedsci.2005.08.004

Nasrollahi S. The new fundamentals for sub acute ruminal acidosis occurrence and their effects on dairy cow health and productivity: Behavioral responses, molecular changes and individual variations. PhD Thesis, University of Tehran. 2017.

Vallejo-Timarán D, Reyes-Vélez J, VanLeeuwen J, Maldonado-Estrada J, and Astaiza-Martínez J. Incidence and effects of subacute ruminal acidosis and subclinical ketosis with respect to postpartum anestrus in grazing dairy cows. Heliyon. 2020; 6: e03712. DOI: 10.1016/j.heliyon.2020.e03712

Jing L, Dewanckele L, Vlaeminck B, Van Straalen W, Koopmans A, and Fievez V. Susceptibility of dairy cows to subacute ruminal acidosis is reflected in milk fatty acid proportions, with C18: 1 trans-10 as primary and C15: 0 and C18: 1 trans-11 as secondary indicators. J Dairy Sci. 2018; 101: 9827-9840. DOI: 10.3168/jds.2018-14903

Coon R, Duffield T, and DeVries T. Risk of subacute ruminal acidosis affects the feed sorting behavior and milk production of early lactation cows. J Dairy Sci. 2019; 102: 652-659. DOI: 10.3168/jds.2018-15064

Yang H, Heirbaut S, Jeyanathan J, Jing XP, De Neve N, Vandaele L et al. Subacute ruminal acidosis phenotypes in periparturient dairy cows differ in ruminal and salivary bacteria and in the in vitro fermentative activity of their ruminal microbiota. J Dairy Sci. 2022; 105: 3969-3987. DOI: 10.3168/jds.2021-21115

AlZahal O, Kebreab E, France J, and McBride B. A mathematical approach to predicting biological values from ruminal pH measurements. J Dairy Sci. 2007; 90: 3777-3785. DOI: 10.3168/jds.2006-534

AlZahal O, Dionissopoulos L, Laarman A, Walker N, and McBride B. Active dry Saccharomyces cerevisiae can alleviate the effect of subacute ruminal acidosis in lactating dairy cows. J Dairy Sci. 2014; 97: 7751-7763. DOI: 10.3168/jds.2014-8212

Zebeli Q, Dijkstra J, Tafaj M, Steingass H, Ametaj B, and Drochner W. Modeling the adequacy of dietary fiber in dairy cows based on the responses of ruminal pH and milk fat production to composition of the diet. J Dairy Sci. 2008; 91: 2046-2066. DOI: 10.3168/jds.2007-0572

Steele M, Dionissopoulos L, AlZahal O, Doelman J, and McBride B. Rumen epithelial adaptation to ruminal acidosis in lactating cattle involves the coordinated expression of insulin-like growth factor-binding proteins and a cholesterolgenic enzyme. J Dairy Sci. 2012; 95: 318-327. DOI: 10.3168/jds.2011-4465

Pourazad P, Khiaosa-Ard R, Qumar M, Wetzels S, Klevenhusen F, Metzler-Zebeli B et al. Transient feeding of a concentrate-rich diet increases the severity of subacute ruminal acidosis in dairy cattle. J Animal Sci. 2016; 94: 726-738. DOI: 10.2527/jas.2015-9605